Table to Multilinear polynomial

A table of height \(2^n\) and width \(2^k\) can be viewed either as \(2^k\) multilinear polynomials in \(m\) variables each, or as a single multilinear polynomial in \(k + m\) variables.

Jagged Table (Row \(= 4 = 2^2\), Column \(= 8 = 2^3\))

( (x_1,x_2) )( y_1y_2y_3=000 )( 001 )( 010 )( 011 )( 100 )( 101 )( 110 )( 111 )
0053184276
0109001113010
100001200014
11000000016

Column Heights:

  • \(h_{000} = 1\) (non-zero only at row 00)
  • \(h_{001} = 2\) (non-zero up to row 01)
  • \(h_{010} = 1\) (non-zero only at row 00)
  • \(h_{011} = 3\) (non-zero up to row 10)
  • \(h_{100} = 2\) (non-zero up to row 01)
  • \(h_{101} = 2\) (non-zero up to row 01)
  • \(h_{110} = 1\) (non-zero only at row 00)
  • \(h_{111} = 1\) (non-zero only at row 00)
\[\begin{aligned} p : \{0, 1\}^n\times\{0, 1\}^k\rightarrow\mathbb{F}\\ p : \{0, 1\}^2\times\{0, 1\}^3\rightarrow\mathbb{F}\\ \end{aligned}\]

In other representation of \(p\)

\[p : \{00, 01, 10, 11\}\times\{000, 001, 010, 011, 100, 101, 110, 111\}\rightarrow\mathbb{F}\\\]

given by

( (y_1,y_2) )( x_1x_2x_3=000 )( 001 )( 010 )( 011 )( 100 )( 101 )( 110 )( 111 )
00\(p(00,000) = 5\)\(p(00,001) = 3\)\(p(00,010) = 1\)\(p(00,011) = 8\)\(p(00, 100) = 4\)\(p(00, 101) = 2\)\(p(00, 110) = 7\)\(p(00, 111) = 6\)
01\(p(01,000) = 0\)\(p(01,001) = 9\)\(p(01,010) = 0\)\(p(01,011) = 0\)\(p(01, 100) = 11\)\(p(01, 101) = 13\)\(p(01, 110) = 0\)\(p(01, 111) = 10\)
10\(p(10,000) = 0\)`\(p(10,001) = 0\)\(p(10,010) = 0\)\(p(10,011) = 12\)\(p(10, 100) = 0\)\(p(10, 101) = 0\)\(p(10, 110) = 0\)\(p(10, 111) = 14\)
11\(p(11,000) = 0\)\(p(11,001) = 0\)\(p(11,010) = 0\)\(p(11,011) = 0\)\(p(11, 100) = 0\)\(p(11, 101) = 0\)\(p(11, 110) = 0\)\(p(11, 111) = 16\)

In this example we defined a polynomial based on a table of \(2^n\) rows and \(2^k\) columns. In next section we construct this polynomial with some other properties and will define a jagged polynomial.