Pedersen Commitment
  • \(G = \{0, g, g^2, g^3, \dots, g^{p-1}\}\) is a finite cyclic group of prime order \(p\) and \(g\) is generator of \(G\) where
\[g^i * g^j = g^{i+j \bmod p} \]
  • Fix \(g, h \in G\) and let \(R = \{0, 1, 2, \dots, p-1\}\).
  • For \(m, r \in R\) define \(H(m, r) = g^m * h^r\)
  • FACT: For a “cryptographic” group G, this H is Collision resistance, So
\[commit(m, r) = H(m,r) = g^m * h^r \]
  • This commitment has interesting property called “Homomorphic” that is:
\[\begin{aligned} commit(m_1, r_1) * commit(m_2, r_2) &= g^m_1 * h^r_1 * g^m_2 * h^r_2\newline &= g^m_1 * g^m_2 * h^r_1 * h^r_2\newline &= g^{m_1+m_2} * h^{r_1+r_2}\newline &= commit(m_1+m_2, r_1+r_2) \end{aligned} \]